REFERATUA.ORG.UA — База українських рефератів



Головна Інформатика, комп'ютери, програмування → Тригонометричні ефемериди планет Сонячної системи

"Тригонометричні ефемериди планет

Сонячної системи"

Зміст

стор.

Вступ. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _5

1.Теоретична частина._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6

2.Розробка алгоритму і структури програми._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 16

3.Програма на мові програмування Delphi._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19

4.Тестування програми і результати її виконання. _ _ _ _ _ _ _ _ _ _ _ _ _ _ 45

5.Висновки. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 46

6.Список літератури. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47

Вступ

З давніх часів люди захоплено дивилися в нічне зоряне небо. Ще нічого не знаючи про будову Всесвіту , вони з ночі в ніч вели спостереження за зорями і Місяцем. Особливо їх зацікавив небесний рух 5 яскравих зірок, які на відміну від інших міняли своє положення і отримали за це назву – планети (aster planetes – (лат.) блукаюча зоря).

Спостерігачі древніх цивілізацій намагалися розгадати закони руху цих
зірок по небу. Древній грек Птоломей описав їх рух, виходячи із своєї гео-
центричної системи світу. Корінний перелом у вивченні небесної механіки
наступив в середньовіччі, коли Копернік поставив у центр світу Сонце, Кеп-
лер на основі спостережень сформулював закони руху планет по своїх орбі-
тах, а Ньютон вивів закон всесвітнього тяжіння. З тих пір астрономи почали
детально порівнювати результати спостережень із результатами обчислень.
Розвиток оптичних приладів і математичного апарату обчислень дав поштовх
до того, що результати набули високої точності. Ті незначні невідповідності
в обчисленнях заставили астрономів задуматись над їх причинами, що дало
змогу відкрити нерівномірності в русі планет, так наприклад зміщення пери-
гелію Меркурія було пояснено лише з приходом теорії відносності.

Людина завжди прагнула побачити своє майбутнє, астрономам вдалося зазирнути у майбутнє планет. Знаючи їх початкове положення і те, як вони ру-
хаються, вчені можуть прогнозувати їх місцезнаходження на століття вперед. Однак вирішення цієї задачі складне, оскільки потрібно враховувати дуже ба-
гато чинників : вплив Сонця , вплив планет одна на одну, зміна елементів їх орбіт з плином часу. До появи ЕОМ ці завдання вирішувались на папері мак-
симум з логарифмічною лінійкою , що займало місяці тяжкої праці. Навіть незначна помилка, особливо на початку роботи, зводила всю її нанівець. Тепер
же, астрономи, за допомогою потужних ЕОМ можуть за лічені секунди обраху-
вати траєкторії руху планет, комет, астероїдів.

1. Теоретична частина

Планети Сонячної системи – це небесні тіла, які рухаються в полі тяжіння Сонця по еліптичних орбітах і світяться відбитим сонячним промінням. Основна відмінність планет від зірок у тому, що температури всередині планет недостатні для перебігу там термоядерних реакцій, що в свою чергу зумовлене їх малою масою.Крім великих планет до складу Сонячної системи входять малі планети – астероїди. Великі планети за їх фізичними характеристиками поділяють на дві групи: планети земної групи – Меркурій, Венера, Земля, Марс, та планети-гіганти – Юпітер, Сатурн, Уран, Нептун. Плутон швидше належить до малих планет. Ос-
новна відмінність між цими групами в тому, що до складу планет першої групи
входять в основному важкі хімічні елементи тоді як планети-гіганти складаються
переважно з водню і гелію.

Отже уявімо, що проста людина, озброївшись підзорною трубою чи навіть біноклем, захоче подивитися на ці планети. Перше питання, яке в неї виникне – це куда, в яку точку неба направити свій погляд, адже без спеціальних знань зоряних атласів виокремити планети на фоні тисячі зірок неможливо. Для любителів астрономії і професіоналів астрономів важливо буде знати точні координати планети, відстань до неї, кутовий діаметр, фазу диска, видиму зоряну величину – тобто знати астрономічні ефемериди планети .

В даній курсовій роботі складена програма на мові Delphi, яка використовуючи закони тригонометрії приблизно обчислює ефемериди планет і дозволяє наочно зобразити планети на фоні зоряного неба. Слово "приблизно" означає, що існує деяка похибка, пов'язана з слабким математичним апаратом обчислення, і ця похибка для професіоналів була б просто катастрофічною. Адже сучасні теорії руху планет з використанням диференціального і інтегрального обчислення, а також сучасні обчислювальні машини дозволяють нівелювати похибку обчислення до похибки роздільної здатності сучасних телескопів. Але хочу звернути увагу, що кінцевими користувачами програми можуть бути прості люди і любителі астрономії, для яких ця похибка не дуже важлива.

Отже, що таке ефемериди? Ефемериди – це астрономічні дані про положення на небі та умови спостереження світил для окремих або послідовних моментів часу. Ефемериди публікують у спеціальних виданнях. Астрономічні ефемериди містять головним чином дані про координати, відстані, фази планет.

Архімед сказав : "Дайте мені точку опори і я переверну Землю". Для астрономії точкою опори, здатною перевернути усю Сонячну систему, є час, а точніше початкова точка відліку часу.

У програмі точкою відліку часу є 9 січня 1990р. Чим особлива ця дата? А ні чим, просто у автора програми під рукою був лише "Астрономічний календар на
1990р. " і він з нього дізнався про точні координати планет Сонячної системи саме на цю дату. Другою проблемою, яку слід вирішити – є система відліку часу.
Те, що творилося з нашим календарем в історії для астрономів інакше як жахом
не назвеш. То спочатку був Юліанський календар потім Григоріанський, під час
переходу було втрачено 13 днів, як наслідок ми св'яткуємо старий Новий рік. Ви-
сокосні роки, 29 лютого, декретний час – все це призводить до плутанини.

В астрономії прийнято нумерувати дні. Нумеровані дні в астрономії мають назву юліанські дні. Якщо дні нумеровані, то спрощуються всі календарні розрахунки. Наприклад, число днів між двома датами рівне різниці відповідних номерів дат. Це визначення і покладено в основу системи відліку часу в нашій програмі. Єдина проблема – це розробити метод нумерації днів в рамках нашого Григоріанського календаря.

Нумерація днів в сучасному календарі затруднена через його неперіодичність : одні місяці мають 30 днів, інші 31, в лютому то 28, то 29 в високосному році. Як-
би в кожному місяці було 30 днів, а високосних років не було, то номер дати
можна було б визначити по формулі:
N=365 * G + 30 * (M-1) + D
де – G, M, D – рік, місяць, день дати.

Найбільші складності в удосконалені цієї формули створює лютий. Для високосних років, починаючи з 1 березня , потрібно враховувати додатковий день. Якби лютий був останнім місяцем року, то по крайній мірі, ця складність зникла б. Тому в календарних розрахунках місяць і рік доцільно перенумерувати: березень буде першим місяцем року і т.д., а січень і лютий одинадцятим і


 
Загрузка...