REFERATUA.ORG.UA — База українських рефератів




ланок ВС та TL, а також точку перетину V ланок СD та LW. Ці точки, по-перше, обмежують видимі частини ланок TL та LW, а по-друге, їх включають як вузлові в екран STUCVWRK, за допомогою якого визначатимуть видимість наступної лінії рівня.

Випробування точок та відрізків на належність екрану в межах цієї задачі можна спростити порівняно з попереднім алгоритмом. а саме:

вузли ліній рівня слід брати на однакових інтервалах, тобто 1-2=2-3=... =5-6;

належність точок до екрана визначають порівнянням координат відповідних вузлів, наприклад yL< уC, тому вузол L- екранується:

якщо на деякому інтервалі з'являється додатний вузол, наприклад вузол U на інтервалі 2-3, то відповідну ланку при наступному екрануванні треба випробовувати

не тільки на порівняння ординати у на межах інтервалу, а й на перетин з двома

підданками TU та UС.

Площа та координати центра ваги плоскої фігури

Як відомо, площу елементарної фігури, обмеженої графіком у = f(x), віссю Ох та прямими x=c, x=d, визначають як

Комп'ютерна графіка. (1.79)

Координати центра ваги елементарної фігури:

Комп'ютерна графіка (1.80)

де

Комп'ютерна графіка- (1.81)

статичний момент площі елементарної фігури відносно осі 0x;

Комп'ютерна графіка (1.82)

статичний момент площі елементарної фігури відносно осі Оу.

У формулах (1.79), (1.81) і (1.82) верхній знак відповідає f(x) > 0, a нижній -

f(x) < 0.

За умов розглядуваної задачі під плоскою фігурою розуміють плоску область, обмежену замкненими контурами, що не перетинаються між собою. Кожний контур є замкненою ламаною. Якщо деякі з контурів криволінійні, то вони заздалегідь з достатньою точністю апроксимуються ламаними.

Вважатимемо, що вузли р контурів, які обмежують область, визначаються масивами координат хij, yij (i=1,2,..., mi; j=1,2,.., p) та умовами замкненості x1j= xmj, y1j=ymj. Отже, кожний контур містить nj=mj-1 вузлів , які не збігаються. Нехай також вузли обмежувальних контурів упорядковані так, що матеріальна площа лежить справа від напряму впорядкування.

Тоді згідно з означенням плоскої фігури та прийнятими домовленостями знак перед правими частинами виразів (1.79), (1.81) і (1.82) можна опустити. Елементарною фігурою буде трапеція, а підінтегральною функцією — лінійна функція.

ГЕОМЕТРИЧНЕ МОДЕЛЮВАННЯ У ПРОСТОРІ

Задання площини та ліній

Площина у просторі. Площину в прямокутних декартових координатах задають у неявній формі

Ах + Ву + Сz+D=0. (1.83)

Ця площина поділяє простір на два півпростори, які можна визначити коефіцієнтом

Комп'ютерна графіка . (1.84)

Для координат x1, y1, z1, будь-якої точки першого півпростору р=1, для точки, яка належить другому півпростору, р = 1, а якщо точка належить площині , то р = 0.

У нарисній геометрії площину задають, проекціями її визначника: трьома точками. що не належать одній прямій: точкою та прямою, що не проходить через точку, двома перетинними прямими: двома паралельними прямими, плоскою фігурою; слідами. Від графічної форми задання будь-яким визначником доцільно перейти. Взявши на площині три неколінійні точки М0(х0, у0, z0), M1(x1, y2, z3), М2,(x2, y2, z2) та підставивши координати їх у формули для визначення коефіцієнтів А, В, С, D.

Дістанемо

Комп'ютерна графіка, Комп'ютерна графіка, Комп'ютерна графіка,

Комп'ютерна графіка. (1.85)

Як уже зазначалося окремим випадком задання площини є той, коли вона за своїм положенням відносно деякої координатної системи с площиною рівня.

Ідея поширення класичних координатних систем спеціальними системами та склад спеціальних систем зумовлені піднесенням будь-якої площини (див. формулу (1.85)) до такої системи координат, в якій вона б була б площиною рівня. Реалізація цієї умови дає змогу в компактній формі задавати плоскі лінії у просторі, діставати рівняння ліній перетину поверхні з площиною:

  • задавати кінематичні поверхні з плоскою твірною;

  • розв'язувати позиційні задачі на цій поверхні;

  • використовуючи допоміжні січні площини загального (у термінах нарисної геометрії) положення.

Зберігаючи позначення та узагальнюючи їх на тривимірний простір, надамо рівнянням вигляду

Комп'ютерна графіка (1.86)

Завдяки введеним спеціальним системам координат та їхнім властивостям щодо піднесення будь-якої площини до такої системи, де вона є площиною рівня, з'являється практично доцільний спосіб задання прямої та плоскої кривої лінії у відповідній системі спеціальних координат виразами

Комп'ютерна графікаКомп'ютерна графіка (1.87)

або

Комп'ютерна графіка (1.88)

Ці рівняння можна віднести до залежності прямокутних декартових координат від спеціальних.

Застосовуючи рівняння інцидентності площин прямої чи плоскої кривої, визначимо тип системи та значення t за наведеним алгоритмом. Підставивши формули дістанемо параметричні рівняння прямої чи плоскої кривої.

Функція для прямої мас вигляд

Комп'ютерна графіка, (1.89)

де k і b відіграють ту саму роль на площині t=const у декартовій прямокутній системі u0v, що й у системі xОу .

Для кола радіуса r, координати центра якого в системі u0v є (a,b), функція має вигляд

Комп'ютерна графіка. (1.90)

Для цього самого кола функції (1.88) набувають вигляду

Комп'ютерна графіка (1.91)

Розглянемо тепер форми задання ще одного класу просторових кривих: гвинтових та квазігвинтових ліній.

Гвинтову циліндричну лінію задають функціями залежності прямокутних декар-тових координат від циліндричних або під узагальнених циліндричних координат, де

Комп'ютерна графіка (1.92)

Якщо в циліндричній системі координат радіус гвинтової лінії дорівнює r, то в узагальненій циліндричній системі він дорівнює Комп'ютерна графіка. В обох випадках крок гвинтової лінії становить. 2k.

Квазігвинтовою називають лінію, що зі сталим кроком напинається на поверхню обертання. Квазігвинтова лінія в гіперболічних координатах задається функціями (1.92). Якщо u=c=0, то вона розміщена на конусі, якщо u=c0, то вона розміщена на однопорожнинному гіперболоїді.

Задання поверхонь

У неявній формі центральні поверхні обертання другого порядку задають, функцією

Комп'ютерна графіка (1.93)

Залежно відзначень параметрів, що входять у рівняння (1.93), воно визначає:

стиснений еліпсоїд (р = 1, q= 1, а > с);

витягнутий еліпсоїд (р = 1,q=1, a < с);

сферу (р = 1,q=1, a = с);

однопорожнинний гіперболоїд (р = -1,q=1);

двопорожнинний гіперболоїд (р = -1,q = -1);

конус (р = -1, q = 0).

Після переходу згідно з залежністю до циліндричних координат та розв'язання рівняння відносно u дістанемо


 
Загрузка...