REFERATUA.ORG.UA — База українських рефератів



Головна Математика, Геометрія → Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)









Пошукова робота

на тему:

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди).

План

  • Поверхні обертання.

  • Циліндричні поверхні.

  • Конічні поверхні.

  • Еліпсоїд.

  • Однопорожнинний і двопорожнинний гіперболоїди.

  • Еліптичний та гіперболічний параболоїди.

3.7. Поверхні другого порядку

Розглянемо алгебраїчні поверхні другого порядку. Загальне рівняння такої поверхні має вигляд:

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.44)

Опишемо важливі поверхні другого порядку. Скласти собі загальне представлення про більшість поверхонь другого порядку можна, розглянувши поверхні обертання ліній другого порядку навколо їх осей симетрії.

3.7.1. Поверхні обертання

Поверхня Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди), утворена від обертання деякої плоскої лінії Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди), що лежить в площині Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) яка проходить через пряму , навколо цієї прямої, називається поверхнею обертання. Пряма називається віссю обертання. Кожна точка лінії при цьому опише коло (рис.3.25).

Виберемо прямокутну (не обов'язково прямокутну) декартову систему кПоверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)оординат Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) причому вісь Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)направимо вздовж Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)а вісь Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)помістимо в площині Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Нехай лінія від обертання якої одержана поверхня, має в цій системі координат рівняння Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Розглянемо точку Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Через неї проходить коло, яке має центр на осі і лежить в площині, що

перпендикулярна цій осі. Рис.3.25

Радіус кола дорівнює віддалі від Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)до осі, тобто Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) Точка Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)лежить на поверхні обертання тоді і тільки тоді, коли на даному колі буде точка Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) що належить

лінії Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Точка Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) лежить в площині Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди), тому Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) Крім того, Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) і Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) оскільки точка Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) лежить на колі, що проходить через Координати точки Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)задовольняють рівнянню лінії Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Підставляючи в це рівняння Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)і , ми отримаємо необхідну і достатню умову того, що точка Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)лежить на поверхні

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.45)

Рівняння (3.45) є рівнянням поверхні обертання лінії Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)навколо осі

3.7.2. Конічні поверхні

Розглянемо на площині Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)пару прямих, що перетинаються і які мають в системі координат Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) рівняння Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) Поверхня обертання цієї лінії навколо осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)згідно формули (3.49) має рівняння

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

і носить назву прямого кругового конуса (рис.3.26).

Стиск (або розтяг ) по осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) переводить прямий круговий конус в поверхню з рівнянням

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.46)

яка називається конусом другого порядку. Конус складається із прямих, що проходять через початок координат. Переріз конуса

Рис.3.26 площинами Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди), що перпендикулярні осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)представляють собою еліпси

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

3.7.3. Еліпсоїд

Розглянемо поверхню, утворену від обертання еліпса Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) навколо осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)Така поверхня називається еліпсоїдом обертання, рівняння якої Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) . Якщо кожну точку на

еПоверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)ліпсоїді обертання зсунемо до площини Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)то всі точки еліпсоїда переходять в точки поверхні, що називається еліпсоїдом (рис.3.27). Рівняння еліпсоїда має вигляд Рис.3.27

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.47)

Еліпсоїд представляє собою замкнуту поверхню з центром симетрії в початку координат. Еліпсоїд отримується із еліпсоїда обертання стиском так само, як і еліпс отримується стиском кола. Очевидно, коли всі півосі рівні, із (3.47) ми одержимо рівняння сфери

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

3.7.4. Однопорожнинний і двопорожнинний гіперболоїди

При обертанні гіперболи навколо осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)(яка її не перетинає) одержимо поверхню, яка називається однопорожнинним гіперболоїдом обертання

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

В результаті стиску цієї поверхні по осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) ми отримаємо поверхню, що називається однопорожнинним гіперболоїдом (рис.3.28). рівняння цієї поверхні має вигляд

(3.48)

Через кожну точку однопорожнинного гіперболоїда (3.48) проходять дві прямі (прямолінійні твірні)

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Дійсно, перемноживши два рівняння і скоротивши на Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди), отримаємо Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) тобто рівняння однопорожнинного гіперболоїда (3.52). А це значить, що всі точки прямих ліній при

всеможливих значеннях Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) і Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) лежать на однопорожнинному гіперболоїді.

Такі ж міркування можна провести і для сімейства прямих

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Поверхня, що складається із прямих ліній, називається лінійчатою поверхнею. Отже, однопорожнинний гіперболоїд – приклад лінійчатої поверхні.

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Рис. 3.28 Рис.3.29

Якщо обертати гіперболу Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) навколо осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (осі, яка її перетинає), то отримаємо поверхню, що називається двопорожнинним гіперболоїдом обертання. Рівняння цієї поверхні

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

В результаті стиску цієї поверхні одержимо поверхню з рівнянням

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.49)

Поверхня, яка в деякій прямокутній декартовій системі координат має рівняння вигляду (3.49), називається двопорожнинним гіперболоїдом (рис.3.29). Двом віткам гіперболи відповідають дві не зв'язані між собою частини поверхні.

3.7.5. Еліптичний та гіперболічний параболоїди

При обертанні параболи Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)навколо її осі симетрії Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)отримаємо поверхню, що називається параболоїдом обертання. Її рівняння

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)або Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Стискаючи її до площини Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)параболоїд обертання переходить в поверхню з рівнянням

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.50)

Поверхня, яка в деякій прямокутній декартовій системі координат має рівняння (3.50), називається еліптичним параболоїдом (рис.3.30). Відмітимо, що перерізи еліптичного параболоїда площинами, що перпендикулярні осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)представляють собою еліпси, а площинами, що паралельні площинам Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) та Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)параболи.

Поверхня, що має в деякій прямокутній декартовій системі координат рівняння

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) (3.51)

називається гіперболічнимпараболоїдом (рис.3.31). Її ще називають сідлом.

Гіперболічний параболоїд будується таким чином: задаються дві параболи і одна з них переміщується так, щоби її вершина ковзала по другій, причому обидві осі парабол паралельні, параболи знаходяться у взаємно перпендикулярних площинах і їх вітки направлені в протилежні сторони. При такому переміщенні рухома парабола описує гіперболічний параболоїд.

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Рис.3.30 Рис.3.31

Переріз гіперболічного параболоїда площиною, що перпендикулярна осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)представляє гіперболу Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) При цьому, якщо Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)дійсна вісь гіперболи паралельна осі а при дійсна вісь гіперболи паралельна осі Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди) При гіпербола вироджується в пару прямих, що перетинаються.

Гіперболічний параболоїд теж є лінійчатою поверхнею. Як і однопорожнинний гіперболоїд, він має два сімейства прямолінійних твірних, рівняння яких можна записати у вигляді

1) Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

2) Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди)

Виводяться ці рівняння аналогічно, як це було зроблено для одно порожнинного гіперболоїда.


 
Загрузка...