REFERATUA.ORG.UA — База українських рефератів



Головна Математика, Геометрія → Алгоритм Дейкстра

Курсова робота

З дисципліни" Основи дискретної математики"

На тему: Алгоритм Дейкстра

Зміст

1.Вступ...........................................................................................................3

2.Елементи теорії графів:
Основні визначення.....................................................................................3
Ізоморфізм, гомеоморфізм............................................................................4
Шляхи і цикли...........................................................................................5
Дерева.....................................................................................................5
Цикломатичне число і фундаментальні цикли....................................................8
Компланарні графи ....................................................................................8
Розфарбування графів................................................................................10
Графи з атрибутами ..................................................................................12
Незалежні безлічі і покриття .......................................................................12

3.Задача знаходження мінімального шляху в графах:

Алгоритм Дейкстра...................................................................................14

Текст програми написаної на основі алгоритму Дейкстра....................................15

Результат виконання програми.....................................................................17
Графічне зображення початкового графа та дерево мінімальних шляхів після виконання рограми....................................................................................18

4.Висновок.....................................................................................................18

5. Література ..................................................................................................19

1. Вступ

Останнім часом дослідження в областях, що традиційно відносяться до дискретної математики, займають усе більш помітне місце. Поряд з такими класичними розділами математики, як математичний аналіз, диференціальні рівняння, у навчальних планах спеціальності "Прикладна математика" і багатьох інших спеціальностей з'явилися розділи по математичній логіці, алгебрі, комбінаториці і теорії графів. Причини цього неважко зрозуміти, просто розглянувши задачу, розв'язувану пошуку найкоротшого шляху в графі .





2. Елементи теорії графів

Основні визначення

Граф (graph) - пари G=(V,E), де V - безліч об'єктів довільної природи, називаних вершинами (vertices, nodes), а E - сімейство пар ei=(vi1, vi2), vijV, називаних ребрами (edges). У загальному випадку безліч V і/чи сімейство E можуть містити нескінченне число елементів, але ми будемо розглядати тільки кінцеві графи, тобто графи, у яких як V, так і E кінцеві.

У приведеному визначенні графа E не випадково названо сімейством пар, а не безліччю. Справа в тім, що елементи E можуть бути не унікальні, тобто можливі кратні ребра. Існує інше, більш коректне визначення: граф визначається як трійка G=(V,E,), де V - безліч вершин, E - безліч ребер, а =(v,u,e) - тримісний предикат (булевська функція від трьох перемінних), що повертає True тоді і тільки тоді, коли ребро e інцидентне вершинам v і u. Однак такі "строгості" у нашому викладі є надмірними.

Якщо порядок елементів, що входять у ei, має значення, то граф називається орієнтованим (directed graph), скорочено - орграф (digraph), інакше - неорієнтованим (undirected graph). Ребра орграфа називаються дугами (arcs). Надалі будемо вважати, що термін "граф", застосовуваний без уточнень "орієнтований" чи "неорієнтований", позначає неорієнтований граф.

Приклад: G=(V,E); V={1,2,3,4}; E=<(1,1), (1,2), (1,3), (2,4), (2,4)>

Алгоритм  ДейкстраG
Якщо e=(v,u), те вершини v і u називаються кінцями ребра. При цьому говорять, що ребро e є суміжним (інцидентним) кожної з вершин v і u. Вершини v і u також називаються суміжними (інцидентними). У загальному випадку, допускаються ребра виду e=(v,v); такі ребра називаються петлями.

Ступінь вершини графа - це число ребер, інцидентних даній вершині, причому петлі враховуються двічі. Оскільки кожне ребро інцидентне двом вершинам, сума ступенів усіх вершин графа дорівнює подвоєній кількості ребер: Sum(deg(vi), i=1..|V|)=2|E|.

Граф, що не містить петель і кратних ребер, називається звичайним, чи простим графом (simple graph). У багатьох публікаціях використовується інша термінологія: під графом розуміється простий граф, граф із кратними ребрами називають мультиграфом, з петлями - псевдографом.

Деякі класи графів одержали особливі найменування. Граф з будь-якою кількістю вершин, не утримуючих ребер, називається порожнім. Звичайний граф з n вершинами, будь-яка пара вершин якого з'єднана ребром, називається повним і позначається Kn (очевидно, що в повному графі n(n-1)/2 ребер).

Алгоритм  Дейкстра

Граф, вершини якого можна розбити на непересічні підмножини V1 і V2 так, що ніякі дві вершини, що належать тому самому підмножині, не суміжні, називається двочастковим (чи біхроматичним, чи графом Кенига) і позначається Bmn (m=|V1|, n=|V2|, m+n=|V|). Повний двочастковий граф - такий двочастковий граф, що кожна вершина безлічі V1 зв'язана з усіма вершинами безлічі V2, і навпаки; позначення - Kmn. Зауваження: повний двочастковий граф Bmn не є повним (за винятком B11=K2).

Алгоритм  ДейкстраB33

Підграфом, чи частиною графа G=(V,E) називається такий граф G'=(V',E'), що V'V і дві несуміжні вершини в G не суміжні в G'. Повним підграфом називається підграф, будь-яка пара вершин якого суміжна.

Основним підграфом (суграфом) графа G називається будь-який його підграф, що містить ту ж безліч вершин, що і G.

Ізоморфізм, гомеоморфізм

Графи G1=(V1,E1) і G2=(V2,E2) називаються ізоморфними (позначення: G1~G2), якщо між графами існує взаємо-однозначне відображення : G1G2 (V1V2, E1E2), що зберігає відповідність між ребрами (дугами) графів, тобто для будь-якого ребра (дуги) e=(v,u) вірно: е'=(v,u)=((v),(u)) (eE1, е'E2). Відображення  називається ізоморфним відображенням.

Іншими словами, ізоморфні графи розрізняються тільки позначенням вершин.
Алгоритм  Дейкстра
Ізоморфні графи. Одне з ізоморфних відображень: (0,0), (1,3), (2,5), (3,6), (4,7), (5,2), (6,1), (7,4), (8,9), (9,8).

Характеристики графів, інваріантні відносно ізоморфизмов графів (тобто приймаючі однакові значення на ізоморфних графах), називаються інваріантами графів.

Підрозділом ребра (v1,v2) графи називається операція додавання в граф вершини v' і заміни цього ребра на два суміжних ребра


 
Загрузка...